Mutation-Based Fuzzing of the Swift Compiler with
Incomplete Type Information

Sarah Canto Hyatt
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, USA
sarahcantohyatt@ucsb.edu

Abstract—Fuzzing statically-typed language compilers practi-
cally necessitates the generation of well-typed programs, which
is a major challenge for fuzzing modern languages with rich type
systems. Existing fuzzers only handle languages with simplistic
type systems (e.g.,, C), only generate programs from small
language subsets, or frequently generate ill-typed programs. In
this work, we propose a mutation-based method for guaranteed
well-typed program generation, even with minimal type system
knowledge. With our method, we take a known well-typed seed
program and annotate understood nodes with their types. We
then try to replace annotated nodes with new type-equivalent
ones, using a generator which fails if the input type is not
understood. The end result is guaranteed overall well-typed as
long as the original program was well-typed, even if most nodes
are unannotated or the generator usually fails.

We applied this approach to fuzzing the Swift compiler, and
we are the first to fuzz Swift to the best of our knowledge. To
implement our generator, we adapted constraint logic program-
ming (CLP)-based fuzzing to work in a mutation-based context
without a CLP engine, and this is the first such adaptation. Our
fuzzer generates ~22k programs per second, and we used it to
find 13 Swift bugs, of which 7 have been confirmed or fixed by
developers to date. Five bugs involved the compiler rejecting a
well-typed program, and were only discoverable thanks to our
well-typed generation guarantee.

Index Terms—Swift, Fuzzing, Compilers, Testing.

I. INTRODUCTION

Compilers are critical pieces of computing infrastructure,
and compiler bugs can silently change code behavior. This
makes finding compiler bugs of utmost importance. Fuzzing
is a popular technique for testing compilers (e.g., [[1]-[6]),
wherein a fuzzer automatically generates test input programs.

Technically any inputs will do, even random strings [7].
However, we must get past the compiler’s front-end in order to
test deeper components, and these deeper components usually
account for the majority of the compiler’s size and complexity
(e.g., ~82% by LOC for Swift). For statically-typed lan-
guages, this means generating well-typed programs. Modern
statically-typed languages have many features complicating
well-typed program generation, including subtyping, generics,
higher-order functions, type classes [8]] (e.g, Haskell, Swift’s
protocols, Rust’s traits), or even affine types [9]] (e.g., Rust). To
maximize the number of discoverable bugs, a fuzzer must be
able to produce well-typed programs using all these features;
any bugs reliant on features not covered will not be found.

979-8-3315-0814-2/25 © 2025 IEEE

58

Kyle Dewey
Department of Computer Science
California State University, Northridge
Northridge, USA
kyle.dewey @csun.edu

However, handling all typing features is a tall task. Modern
languages generally lack complete formal or even informal
specifications, and constantly evolve to add new features.
This makes reasoning about well-typedness a blurry, moving
target. To the best of our knowledge, fuzzers for statically-
typed languages with complex typing features can either only
generate programs according to small language subsets (e.g.,
Dewey et al. [10], SyRust [11]], Chaliasos et al. [12]), or fre-
quently generate ill-typed programs (e.g., Stepanov et al. [[13])).
While prior works phrase these issues merely as limitations of
the specific fuzzing techniques or implementations devised,
our key insight is these are actually manifestations of a
fundamental limitation of what is realistically possible in well-
typed fuzzing. Even with total type system knowledge, which
is already unlikely, this knowledge alone does not provide a
way to efficiently generate well-typed programs. For example,
merely typechecking arbitrary Java is undecidable [14], so
generating similarly arbitrary well-typed Java is likely at least
as difficult. Statically-typed language fuzzers will therefore
always be limited in general, necessitating fuzzing approaches
that are highly tolerant of limited information.

With such limitations in mind, in this work, we devise a
fuzzing approach guaranteeing well-typed generation, even
with incomplete type information and program generation
capabilities. Our approach is mutation-based (e.g., Holler et
al. [2]), wherein an existing set of known well-typed programs
(the seed set) is modified to produce new well-typed programs.
A compiler’s existing test suite can serve as a suitable seed
set. From there, our approach uses three components: a parser,
a possibly-incomplete typechecker-like type analysis, and a
possibly-incomplete generator of well-typed expressions. The
parser needs to be only complete enough to parse in the seed
set, and the parser from the compiler under test may serve
this purpose. The type analysis annotates AST nodes it un-
derstands with their respective types, and must guarantee that
these annotations are correct. Any node it cannot handle for
whatever reason (e.g., behavior still unimplemented, poorly-
understood type system features, decidability issues, etc.) is
left unannotated. The typechecker from the compiler under
test may serve this purpose, if isolatable and trustworthy. The
expression generator takes an input type and either produces
an expression of that type, or fails to generate anything;

ICST 2025, Naples, ltaly
Technical-Research Track

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

failure may occur for similar reasons as the type analysis. The
generator must guarantee that the given expression generated
is a well-typed expression of the input type.

Using these components, a program from the seed set
is first parsed in and subsequently undergoes type analysis.
From there, for every annotated node, we attempt to use the
generator with the annotated type as input. The original node
is either replaced by the new node on success, or simply
left in place if the generator fails. This process preserves the
original types, guaranteeing type-equivalence to the original
program overall. Since the original program was well-typed,
this means the new program is also well-typed, even if most
nodes are unannotated or left in place. This approach generates
programs using all the features in the seed set, even if some
(or even most) of these features cannot be reasoned about or
directly generated by the fuzzer. A more advanced typechecker
or generator will lead to more possible output programs, but
crucially this is not needed for the well-typedness guarantee.

We applied this approach to fuzzing Apple’s Swift, which
nearly 5% of all programmers reported using in 2024 [15].
Despite Swift’s popularity, its only specification is incomplete
user-facing documentation, based primarily on English and
short code snippets [|16]. Furthermore, there are no alternative
Swift implementations, so we cannot run the same input
on multiple compilers to find discrepancies (per differential
testing [1]]). These properties make Swift an excellent fuzzing
candidate for our approach, as only limited typing information
is available. We can also take advantage of the well-typed
generation guarantee as an oracle, without needing other
Swift implementations: all generated programs are well-typed,
therefore any rejection indicates a bug. To the best of our
knowledge, we are the first to fuzz Swift.

Swift’s parser and typechecker were not designed to be
separated from the compiler, nor did we consider them trust-
worthy, so we wrote our own. Our type analysis and generator
only handle a subset of Swift with straightforward typing
rules. For the generator, we innovated upon constraint logic
programming (CLP)-based fuzzing [5], [[10]], which was origi-
nally designed to produce whole programs from scratch using
CLP languages (e.g., SWI-Prolog [17]]). We heavily modified
CLP-based fuzzing to work for mutation-based fuzzing with-
out CLP languages, and wrote a corresponding generator in
Scala that could handle the same Swift subset as our type
analysis. Despite our limited type analysis and generator, we
found 13 bugs in the Swift compiler. Of these, 5 were cases
where the compiler incorrectly rejected an input program;
these would not have been discoverable without our well-
typed generation guarantee. Nearly a quarter of all expression
nodes are nonetheless understood and eligible for replacement,
despite our limitations, suggesting only minimal type system
knowledge is necessary to build a basic fuzzer with our
approach. We also study the effect of additional type system
knowledge on bug-finding power.

The contributions of this paper are:

« A mutation-based approach to fuzzing statically-typed

languages guaranteeing well-typedness, even with limited

59

type information or generation capabilities. (Section [III)
An adaptation of CLP-based fuzzing for mutation-based
testing without a CLP language. (Section

The application of this approach to Swift. (Section [V).
An evaluation detailing the bugs we found, generation
speed, how many nodes are replacable, and how bug-
finding effectiveness changes as more type system infor-
mation is provided. (Section [VI)

II. RELATED WORK

CSmith [3|] generates well-typed C programs devoid of
undefined behavior from scratch, via the help of a conservative
program analysis. The analysis avoids issues related to C’s
dynamic semantics, whereas we focus on static semantics (i.e.,
types). C’s type system is fairly trivial, simplifying well-typed
C generation. Comparatively, avoiding undefined behavior is a
major challenge, and is CSmith’s major innovation. We posit
that this innovation is possible only because C has a complete
(albeit informal) semantics [[18]], making this fuzzing approach
inaccessible for languages without complete specifications.

Dewey et al. [5], [10] introduce CLP-based fuzzing, wherein
entire well-typed programs are generated from scratch via a
CLP engine. They apply CLP-based fuzzing to JavaScript and
Rust, finding 18 bugs in Rust. With CLP-based fuzzing, one
writes a typechecker for the language being fuzzed in CLP.
Normally, a typechecker is a predicate which determines if a
given input program P typechecks (i.e., typechecks (P)),
and CLP allows such execution. However, CLP also allows
typechecks to generate satisfying programs, i.e., give all Ps
such that typechecks (P) holds. Dewey et al. state this is
unique to CLP, making their work dependent on CLP engines.
Furthermore, in practice, non-trivial optimizations are needed
to write efficient CLP-based program generators, practically
requiring significant CLP expertise. Overall, this severely
limits CLP-based fuzzing’s practical applicability [12], [19].

Our work is primarily inspired by LangFuzz [2]], a mutation-
based approach wherein AST nodes in a seed set are replaced
with either existing nodes, or new nodes generated according
to a context-free grammar (CFG). LangFuzz was applied to
two dynamically typed languages, JavaScript and PHP, finding
bugs in both. However, CFGs only guarantee syntactic validity,
and less than 1% of randomly-generated syntactically-valid
programs are well-typed [13[], making LangFuzz inappropriate
for fuzzing statically-typed languages like Swift.

Multiple mutation-based approaches have been devised
which attempt to generate well-typed programs. JAT-
TACK [20] allows developers to write template Java pro-
grams containing “holes”, where the holes are filled-in using
developer-written generators in a provided API. Developers
must manually ensure their generators produce well-typed
expressions of an appropriate type for the hole, and the API
effectively forces generators to use a CFG, introducing the
same issues as LangFuzz and severely limiting what can be
generated. Their approach requires the template program to
be executed to fill in holes, leading to poor generation rates
between 5-77 programs per second, depending on the template.

Chaliasos et al. [12]] developed a generator of well-typed
expressions according to a custom IR. They then translate
programs in this IR to programs in Java, Kotlin, or Groovy,
and subsequently mutate the programs to either remove type
annotations (testing type inference), or replacing type anno-
tations with incompatible ones (to test if ill-typed programs
are properly rejected). Only language features in the IR and
translation are present in target programs, limiting the features
that can be tested in the languages under consideration.

Sotiropoulos et al. [21]] expand on the work of Chaliasos at
al. [12] by introducing program generation based on API pro-
gram synthesis. They use API graph enumeration to generate
all possible calls to an API and ensure generation of well-typed
programs by skipping any APIs for which they cannot infer
concrete types. Their approach completely omits API calls that
they cannot provide a well-typed call for, which they admit
poses a challenge for applying this to languages with more
sophisticated type systems like Rust or Typescript.

Zhang et al. [22] introduce skeletal program enumeration
(SPE), wherein variables in a given input program are swapped
with other in-scope variables of the same type. They found
hundreds of bugs in multiple C compilers. SPE only can vary
variable usage, limiting the sorts of programs it can produce.

Stepanov et al. [13] is arguably the most similar work to
ours. They introduce type-centric enumeration (TCE), and use
it to fuzz Kotlin. From a high level, TCE, like our approach,
also identifies typed holes in a seed program, and attempts to
fill those holes using expressions of the same type. However,
the generation approach used is fixed in TCE, and is arguably
far more complex. TCE starts with a generation phase, wherein
expressions of known types from a seed set of programs
are collected. TCE then constructs larger expressions using
these initial seed expressions by applying rules describing
call-like expressions in Kotlin. This means their generator
itself requires a seed set, and it only generates call-like
expressions. These constructed expressions are then used to
fill in holes of the same type in the original seed set during a
separate mutation phase. There is no guarantee that anything
the generation phase produces will be used in the mutation
phase, introducing possible performance issues. Furthermore,
the generation phase uses snippets which may not work outside
of their original context (e.g., using a variable), necessitating
a Kotlin-specific semantics-aware merge operation to reintro-
duce missing components. This leads to large programs likely
to contain lots of irrelevant code.

Most importantly, TCE does not guarantee well-typed gen-
eration, with only ~63% of generated programs being well-
typed. They also evaluate TCE with some additional Kotlin
typing information (TCE + EM in their paper), which seems
to be more effective at finding bugs, but with an even lower
well-typed generation rate of ~13%. While different numbers
of bugs found are reported, looking specifically at TCE, TCE
found 18 unique bugs considered “interesting” according to
the Kotlin developers (21 are explicitly mentioned, but 3 of
these were duplicates). No exact numbers for “uninteresting”
TCE-discovered bugs are reported.

60

Fig. 1. (1 = 5) + (3 - 2) after initial parse to an AST.

III. APPROACH

In this section, we discuss our approach for generating guar-
anteed well-typed programs even in the absence of most typing
knowledge. We take a two-phase approach: type analysis, and
mutation. The rest of this section discusses these phases, as
well as key properties this approach has overall. Throughout
this section, we use an illustrative example wherein an input
program (1 = 5) + (3 - 2) is ultimately used to gen-
erate a new well-typed program.

A. Type Analysis

We assume the existence of a seed set of programs that
are known to be well-typed. A compiler’s test suite should
be adequate for this purpose, especially if it uses a large set
of features found in the language. From there, we randomly
select an input seed, and parse it to an AST. For our example,
this leads to the AST in Figure

We then apply a variation of typechecking to the AST in or-
der to annotate AST nodes with their types. Unlike traditional
typechecking, the goal is not to verify well-typedness, as we
know the program is well-typed from our initial assumption.
The goal instead is to annotate as many AST nodes as possible
with their corresponding types. Any nodes we cannot reason
about are left unannotated, instead of reporting a problem.
This phase thus resembles a conservative program analysis in-
stead of traditional typechecking. Similar to program analysis,
soundness here is key: it is perfectly acceptable to leave nodes
unannotated, but if a node is annotated, the annotation must
be correct to guarantee downstream well-typed generation.

With respect to our running example, we apply our type
analysis in Figure [2] For expository purposes, our analysis
cannot reason about multiplication, and so the multiplication
node remains unannotated. Its child nodes, however, are un-
derstood, and therefore annotated. Addition is understood by
the type analysis only if the types of both children are known.
In this case, since addition’s left child lacks a known type, the
addition overall lacks a known type.

Fig. 2. (1 = 5) + (3 - 2) (Figure after type annotation. NONE
means that a node does not have a known type. The type analysis here cannot
understand multiplication, nor addition with a child with an unknown type.

B. Mutation

Next is the mutation phase, which assumes the existence of
an expression generator with the following signature:

def generateExp (ofType: Type): Option[Exp]

Given a type ofType, generateExp will attempt to pro-
duce a new node of that type. The only requirements are that
the generated node must be of type ofType, and the node
must overall be well-typed. If the generator is unable to do
this for whatever reason (e.g., incomplete implementation), the
generator instead fails, hence the result type of Option.

For each annotated node, we can execute the generator with
the node’s type. If the generator produces a new node, then this
new type-equivalent node replaces the original one. Otherwise,
the original node is left as-is. As long as one node is replaced
in this manner, a new, type-equivalent program is produced.
Since the original program was well-typed, then the resulting
program is also well-typed, even if most nodes lack known
types, or the generator failed to generate something.

Figure [3] shows the result of the mutation phase on our
running example. Unannotated nodes from Figure 2] remain in
place, whereas all annotated nodes may be replaced. The entire
subtraction node was replaced with the node for 0 + 8, which
is type-equivalent with type INT. Although the multiplication
node was unannotated, its children were annotated, and so they
were replaced with type-equivalent 7 and 4 nodes.

C. Key Properties

There are two key properties this approach has. For one,
guaranteed well-typed outputs serve as their own testing
oracles. That is, if the compiler rejects one, we know we have
a compiler bug wherein the compiler failed to accept a well-
typed program. This lets us detect more than just crashes,
and does not require an alternative compiler version like
differential testing [1] would. Fuzzers without this guarantee
have no way to differentiate between an incorrect rejection
from the target compiler, versus the fuzzer generating an
invalid program, leading to missed bugs.

61

Fig. 3. (1 * 5) + (3 - 2) (Figure[2) after mutation.

Another key property is that this approach is general, and
amenable to growing. The type analysis can be improved to
annotate more nodes, meaning more replaceable nodes for the
mutation phase. Similarly, practically any generation approach
could be used for our prior definition of generateExp; the
more nodes generable, the larger the space of possible output
programs. Crucially, such improvements neatly fit into our
general fuzzing approach.

IV. ADAPTING CLP-BASED FUZZING

In this section, we discuss our approach for generating well-
typed expressions, and show how to generate such expressions
via a code example. This generator can be used as part of
our overall fuzzing approach (Section [[II). Our generation
approach relies on a heavily-modified version of CLP-based
fuzzing [5]], [10]. CLP-based fuzzing only permits whole
program generation and requires CLP languages, though our
approach lifts these restrictions.

Looking at the CLP features enabling CLP-based fuzzing,
we found that only two are essential: unification and nonde-
terministic execution. With those features, CLP-based fuzzing
can be performed, independent of the fuzzer implementation
language. We discuss unification’s importance first, then non-
deterministic execution. Unification is a way to implement
equality constraints over data, where the data may contain
variables. Unification has been used in typechecking and type
inference for decades [23]], [24], and is used in some recent
work on well-typed program generation [[12]], [25].

We motivate unification for generation via an example gen-
erating well-typed Java. In Java, + is overloaded over multiple
types, including int, long, and double. If we generate 1
+ r for subexpressions 1 and r, then we must record that
typeof (1 + r) typeof (1) typeof (r), ignor-
ing implicit type coercions. Initially, multiple types may work
for 1 + r, and so its type should be left unconstrained.
Unification can record such equalities without prematurely
choosing a particular type. With respect to our approach,
unification libraries exist (e.g., unification-£fd [26]),
making CLP unnecessary for unification.

As for nondeterministic execution, this allows for a compu-
tation to have 0 — N answers, instead of the usual 0 —1 (where
0 may indicate an error). For example, if solving for integer
n in 0 < n < 10, there are multiple possible solutions. Key
to CLP’s nondeterministic execution is that the computational
cost of finding a given solution is proportional to that solution,
as opposed to all solutions, in contrast to a traditional SMT
solver with blocking clauses [27]. Nondeterministic execution
is useful for generation because there are often many different
expressions of a given desired type. Nondeterministic exe-
cution can be implemented as a library (e.g., MiMIs [28]),
making CLP unnecessary for nondeterministic execution.

The challenge then is to combine unification and nondeter-
ministic execution into a single coherent library. With such
a library in hand, there is no need for CLP languages to
perform CLP-based fuzzing. The rest of this section details
our combination approach, the library we developed, and the
application of this library to generate well-typed programs.
Code in this section is written in Scala, as we used Scala to
write our fuzzer, and the library itself is a paper contribution.
However, the same ideas should be implementable in any other
language supporting mutable state and higher-order functions.

A. Unification

Unification operates over terms, which obey this grammar:

v € Variable s € StructureName

-y~
This term grammar mimics Prolog’s, and can represent
types as terms. For example, Int is representable with
Int () (a structure named Int with no subterms). Type
List [String] is representable with List (String()).
Variables represent unknown types.

We implement unification via a map of variables to terms,
similar to a union-find data structure [29]]. For example,
unifying variables X and Y stores X — Y in the map. This
map forms a graph where nodes are terms and edges dictate
that two terms are equivalent. For any path through the graph,
all nodes in the path are equivalent. Each term in the graph
has a representative, which is the last node in a path. To unify
two terms, we first find their representatives, and either add
new edges and terms if the set representatives are compatible,
or fail if they are incompatible. For example, variable X and
term Bool () are compatible, but Bool () and Int () are
not. Structures are compatible only if they have the same name,
number of subterms, and their subterms recursively unify.

From a user’s perspective, unification is representable in an
immutable style as follows:

termu=v | s (" termx

def unify (map: Map[Variable, Term],
tl: Term, t2: Term):
Option[Map[Variable , Term]]

That is, uni fy takes an existing map of variables to terms, as
well as two terms to unify. On success, it returns a new map,
or None if unification fails (hence the Opt ion result type).

62

and(or(singleton (1), singleton(2)),
a => and(or(singleton(3), singleton(4)),
b => singleton ((a, b)))))

Fig. 4. Code constructing an iterator over pairs of integers.

B. Nondeterminism

Dewey et al. [28]] implements nondeterministic execution
via iterators; this subsection covers background from that
work. Instead of looking at type Iterator[A] (for some
A) as a single deterministic value, we instead view it as
a computation that nondeterministically produces values of
type A, where iterating over the iterator retrieves individual
As. From there, larger nondeterministic computations can be
composed from smaller ones using four helper functions:

def fail[A]: Iterator[A]
def singleton[A](a: A): Iterator[A]
def or[A](itl: Iterator[A],
it2: Iterator[A]): Iterator[A]
def and[A, B](it: Iterator[A],
f: A => Iterator[B]): Iterator[B]

fail returns an empty iterator, so named because it is used
when there are no solutions. singleton takes a given
element and returns an iterator over that element, putting de-
terministic values into a nondeterministic context. or creates a
new iterator that initially iterates over everything in it1, and
then seamlessly switches to it2, analogous to list append.
Lastly, and takes an iterator over As, and produces an iterator
over Bs with f£’s help. Intuitively, £ is applied to each A from
it, and the resulting Iterator [B]s are merged together
via or; this can be done lazily to delay calls to £ until they
are necessary. and is so named because it threads the result
of one nondeterministic computation into another. Figure @]
shows an example constructing an iterator over integer pairs
according to {(a,b)la € {1,2},b € {3,4}}.

Iterators can be constructed on demand, delaying actual
work until iteration begins. The actual work performed is
thusly proportional to the number of solutions iterated over,
instead of the total number of solutions. This captures CLP’s
semantics, which similarly computes solutions on demand.

C. Combining Unification and Nondeterminism

The unify operation from Section [[V-A]and the four func-
tions from Section can be used together as-is. However, it
is cumbersome to do so, as the map must be threaded through
all computations. This leads to awkward signatures wherein
every nondeterministic computation takes a map and returns
a new map along with the actual result of the computation. A
possible solution is to make the map global and mutable, as
CLP does internally [30]]. However, this would require saving
and restoring the map as different solutions are computed,
which is complex. We instead use a state monad [31]], [32]]
to track the map, hiding it from signatures. This is illustrated
below, where Ulterator represents our core abstraction:

exp =0 | “"foo" | exp; "+ exps

Fig. 5. Expression grammar over strings, integers, and an overloaded + that
operates over a single type.

type Ulterator [A]
(Map[Variable , Term]) =>
Iterator [(Map[Variable , Term], A)]
def unify(tl: Term,

t2: Term): Ulterator[Unit]

A Ulterator[A] (unification + iterator) is a higher-order
function that takes a map and returns an iterator over map,
A pairs. Intuitively, unify now returns a function that will
later take and return the map, instead of requiring the map
upfront. The helper functions have nearly the same signatures,
but are over UIterator instead of Iterator. User code
now constructs UTterators but otherwise does not change;
for example, Figure s code still works as-is, though it now
constructs a UIterator. For or, the same input map is
passed to both it1 and it2. For and, the input map is first
passed to it to yield a new map m/, and m’ is subsequently
passed to the UIterator returned from f. The new two-
argument version of uni fy internally checks the result of the
three-argument version of unify from Section[IV-Al and calls
fail if unification failed. If unification succeeds, this only
changes the map, which is now hidden away in UIterator’s
definition. Unit is used as a dummy value; on unification
success, there will be one unit value available, but on failure,
there will be nothing to iterate over.

D. Performing Well-typed Generation

With UIterator, we can generate guaranteed well-typed
code. Consider the grammar in Figure[5] where + is over either
two integers or two strings, but not a mixed combination. In
this grammar, 1 + 2 is well-typed, but not 3 + "foo™".

Figure [6] shows a UIterator-based generator of well-
typed expressions of depth < k according to Figure [5[s gram-
mar. A line-by-line breakdown of Figure [6]s code follows:

o Lines 2-3: If k is exceeded, outright fail.

Lines 5-7: If our expected type ofType unifies with
Int (), then generate integer literal O.

Lines 8-10: If our expected type ofType unifies with
String (), then generate string literal "foo".

Lines 11-14: Chain two recursive calls to genExp to
make a P1lus expression from the generated subexpres-
sions. Since both genExp calls take of Type, both calls
will produce expressions of the same type.

Lines 15: The overall result is the nondeterministic choice
of the last three bullets.

The initial genExp call must provide £ and a term rep-
resentation of the type to generate for. genExp will subse-
quently return a UTterator (a higher-order function), which
can be called with an empty map (for unification) to return

63

an Iterator. From there, the iterator can be traversed to
produce different well-typed expressions of the provided type.

E. Code Cleanup

Figure [6] can be made more readable via helper methods
to create structures representing our types. We can similarly
introduce a multi-argument or which chains two-argument or
calls, similar to what line 15 of Figure [6] does explicitly. We
can also take advantage of Scala’s for comprehensions [33]],
allowing for chained uses of and without nesting. For compre-
hensions require UIterator to be a separate trait (or class),
making and a method which implicitly takes its UTterator
via this, and renaming and to flatMap. These changes
turn UIterator into a Scala-recognizable monad, where
and is the bind operation [28]]; Scala calls bind flatMap,
and for comprehensions are designed to work with monads in
the same way as Haskell’s do notation [34]. Figure [/| is an
updated version of Figure [6] reflecting these changes.

V. IMPLEMENTATION

We applied our technique to fuzzing Swift’s compiler,
swiftc. Swift’s parser and typechecker are not designed to
be separated from the compiler, nor did we consider these
components trustworthy, so we wrote our own parser and type
analysis. Parsing Swift, despite the presence of a CFG [35]],
is surprisingly challenging due to a combination of documen-
tation issues and syntactic ambiguities. We implemented our
parser via a combination of Scala’s parser combinators [36],
[37] and a custom library for handling ambiguous grammarsE]
We believe this initial obstacle heavily contributes to why no
one has previously fuzzed Swift.

Our type analysis only handles a small Swift subset, namely
literals, variables, infix expressions, ternary expressions, prefix
expressions, assignment expressions, parenthesized expres-
sions, arrays, and named functions. The only types natively
understood are Int, Double, Bool, Char, String, and
Void. Other types are handled by our type analysis by
relying on type annotations in the input program. The analysis
recursively traverses the AST and maintains a mapping of
in-scope variables to their types and function names to their
signatures, hereafter referred to as a type environment. For each
AST node, the analysis annotates the node with its type, if
possible. The analysis also saves the current type environment
on the node, which is used later by the mutation phase. For an-
notated variable declarations, the variable is added to the type
environment, even for unknown types. For example, with var
x: MyClass MyClass (5), x — MyClass is added to
the type environment, even though MyClass is not natively
understood. For unannotated variable declarations (e.g., var
X 7), if the initializer’s type cannot be determined, then
the variable is not added to the type environment. For named
functions, the function’s name is mapped to its signature.

Our generator operates over a similar subset of expressions
as the type analysis, namely integer literals (as decimal, binary,

I'The library is yet unpublished and not considered a contribution here.

e2 => singleton (Plus(el,

Term): Ulterator [Exp] {

Structure ("Int", Seq())),

Structure (" String", Seq())),
_ => singleton(StringLiteral ("foo")))

of Type),

ofType),

€2))))
plus))

1 def genExp(k: Int, ofType:

2 if (k <= 0) {

3 fail

4 } else {

5 val intLit =

6 and (unify (ofType,

7 _ => singleton(IntLiteral (0)))
8 val stringLit =

9 and (unify (ofType,

10

11 val plus =

12 and (genExp(k - 1,

13 el => and(genExp(k - 1,
14

15 or(intLit, or(stringLit ,

16 }

17 '}

Fig. 6. Nondeterministic generator of well-typed expressions according to the grammar in Figure 3}

Structure ("Int", Seq())
Structure (" String", Seq())
ofType: Term):

Ulterator [Exp] {

intType)

stringType)

1 def intType: Term =

2 def stringType: Term =

3 def genExp2(k: Int,

4 if (k <= 0) {

5 fail

6 } else {

7 or (

8 for {

9 _ <— unify (ofType,

10 } yield IntLiteral (0),

11 for {

12 _ <— unify (ofType,

13 } yield StringLiteral ("foo"),
14 for |{

15 el <— genExp(k - 1, ofType)
16 e2 <- genExp(k - 1, ofType)
17 } yield Plus(el, e2))

18 }

19 }

Fig. 7. Equivalent version of the code from Figure [f] using helper functions and for comprehensions for improved readability.

octal or hex), double literals (as decimal or hex), boolean
literals, strings, chars, parenthesized expressions, binary ex-
pressions, prefix expressions, ternary expressions, variables,
assignment expressions, arrays, and named function calls. Our
generator takes a bound on the depth of generated ASTs,
and exhaustively generates all ASTs within that depth without
duplicates. For or, our generator randomly chooses the order
in which to explore child iterators. For literal nodes (e.g., 42,
3.14), it randomly selects one value instead of nondetermin-
istically trying others, given how many values are possible.

To produce a new program, we recursively traverse the
annotated AST, producing a new AST in the process. For each
unannotated node, we recursively process the node’s children,

64

then copy the node with the possibly new children for the
output AST. For each annotated node, we nondeterministically
choose either to process the node as if it were unannotated, or
select a replacement node from our generator. The generator
has a nearly-identical signature to Figure [7, but a type en-
vironment is additionally passed in; the node being replaced
provides this type environment, which came from the type
analysis phase. The generator’s body consists of a large or
selecting between different kinds of generable AST nodes.
This body is too large to show in its entirety, but key portions
are below, with some modification to improve exposition.

The following code generates an integer literal in base 10:

for {
_ <— unify (ofType, intType)
n <— or(singleton(0), singleton (1))

} yield DecimallntegerLiteral (n.toString)

This code first ensures we may generate something of type
Int via the unification. It then nondeterministically selects
n € {0,1} via or, and outputs n’s string representation.

The code below generates infix expressions of depth < k.
NewVariable creates new unification variables.

def infixHelper(lt: Term, rt: Term,
of Type: Term): Ulterator[Operator]
or (
for {
_ <— unify (It , intType)
_ <= unify(rt, intType)
_ <— unify (ofType, intType)
} yield Operator("+"),
for {
_ <— unify (It , boolType)
_ <= unify(rt, boolType)
_ <— unify (ofType, boolType)
} yield Operator ("&&")
...) // more operators

{

elided
}
val It
val rt
for {
op <— infixHelper(lt, rt, ofType)
1 <— genExp(lt, k — 1, env)
r <— genExp(rt, k — 1, env)
} yield InfixExp(l, op, r)

infixHelper looks for an operator which returns ofType,
given two input expressions of types 1t and rt (representing
the left and right subexpression types, respectively). While
only two operators are shown here, the real infixHelper
considers 43 possible operators, and is implemented with
minimal code duplication. Most operators are overloaded (e.g.,
+), and are repeated for each set of possible types. Once
infixHelper finds a suitable operator, this code recursively
generates subexpressions of types 1t and rt, subtracting one
from the bound £ to limit the overall expression size. Finally,
once subexpressions 1 and r are generated, they are bundled
together into a single AST node with the chosen operator.
The code below attempts to generate an in-scope variable of
type ofType. The toUIterator helper converts a regular
iterator to a Ulterator, and the iterator method on env
(the type environment) returns an iterator over variable, type
pairs. The typeToTerm helper takes a type and returns its
term-based representation, suitable for unification.

for {
(name, typ) <— toUlterator(env.iterator)
_ <= unify (ofType, typeToTerm(typ))

} yield VariableExp (name)

NewVariable ()
NewVariable ()

65

This code nondeterministically chooses a variable from the
type environment, and attempts to unify the variable’s type
with ofType. If unification succeeds, then a node with the
variable’s name is emitted. If unification fails, a different
variable will be nondeterministically selected for the same
process. This continues until either a suitable variable is
found, or all variables in the type environment have been
considered. Since the type analysis phase includes variables
in the type environment from explicit type annotations, even
for unknown types, this generator can produce expressions of
types it otherwise cannot generate. In other words, as long as
variable x is in scope and is explicitly annotated to be of type
T, this generator can generate x if ofType unifies with 7,
even if the generator otherwise cannot generate 7 expressions.

VI. EVALUATION

In this section, we evaluate our fuzzer with respect to four
research questions:

o RQ1: How many and what kinds of bugs does it find in
Swift? This speaks to overall bug-finding effectiveness.
RQ2: How quickly can it generate Swift programs? This
measures the computational cost of our approach, and is
independent of bug-finding power.

RQ3: How many nodes does it annotate with types? More
nodes annotated mean more opportunities to generate new
programs.

RQ4: How does bug-finding effectiveness change as
more type system knowledge is used? Our approach
allows us to at least begin to answer such a question by
incrementally adding more features to the same fuzzer.

To evaluate these questions, we use a seed set of 3,444
programs that were sourced from the Swift repository [38].
We configured our fuzzer to operate at increasing levels of
generation capability, detailed below:

o Level 1: only literals (integers, floats, chars, static strings,
booleans) and parenthesized expressions

o Level 2: level 1 plus prefix expressions, binary expres-
sions, and ternary expressions

o Level 3: level 2 plus variables, assignment expressions,
arrays, and named function calls

We ran the fuzzer on each seed file for each level, using
a max depth of 2, producing one batch of files for each
seed and level. Because the fuzzer uses bounded-exhaustive
search with a large nondeterministic state space, many billions
of unique programs are generable, which is prohibitive for
experimentation. As such, we set a timeout on the fuzzer of
5 seconds for level 1, 10 seconds for 2, and 15 seconds for
3. We then ran each batch of files on swiftc version 5.8.1,
with a timeout of one minute for the whole batch; this timeout
was due to a limited testing budget. In total, ~439M programs
were generated, and ~1.4M of these were run on swiftc.
All experiments were run on a MacBook Air with an M2
processor and 24 GB RAM. We divide up the rest of our
evaluation according to these research questions.

1 func example(_ f: (Int) throws —> Int)

2 rethrows —> Int { return try f(7); }

3

4 print(example({x in x})); // ok

5

6 let hof = example;

7 // hof inferred type:

8 // ((Int) throws —> Int) throws —> Int

9 print(hof({x in x})); // compile error

Fig. 8. Bug 3: throws and rethrows interacting poorly with higher-

order functions, leading to program rejection. The original bug trigger was
simplified for expository purposes.

A. RQI: Number and Kinds of Bugs Found

We found 13 bugs (Table E]), divided into three classes:

o Rejection (R): swiftc rejected a well-typed program.

e Crash (C): swiftc crashed.

o Specification (S): Swift’s documentation (effectively

Swift’s specification) diverges from swiftc’s behavior.
S-class and R-class bugs are distinguished based on where
the bugfix was placed or likely needs to be placed. To find
R-class bugs, we must know ahead of time that the compiler
should accept a program, making our guaranteed well-typed
generation approach well-suited to finding R-class bugs. We
also list the fuzzer level(s) which found the bug. All bugs occur
on Swift versions 5.8.1 and 5.10, except for Bug 11. Bug 11
was fixed by 5.10, and to the best of our knowledge, this
bugfix was unintentional. The rest of this subsection discusses
a subset of the bugs we found, divided by bug class.

1) R-class Bugs: Figure [§] is a case where the compiler
improperly rejected a program in a manner indicating a deeper
issue in Swift’s language design. Swift requires exception-
throwing functions to be annotated with throws, and calls
to exception-throwing functions must use try. Swift allows
functions taking higher-order functions as parameters to be
annotated with rethrows, meaning an exception is only
thrown if the provided higher-order function throws an ex-
ception. If users pass higher-order functions that do not throw
exceptions to rethrows-annotated functions, then try is
unnecessary. However, an oversight is that rethrows can
currently only be used on named (not higher-order) functions,
leading to inconsistent behavior. For example, on line 4 of
Figure[§] example can be called directly with a non-throwing
higher-order function without t ry. However, if example is
assigned to a variable to create a higher-order function (line
6), Swift infers a return type annotated with throws instead
of rethrows (line 8). This causes a compilation failure on
line 9, as hof’s call thus needs a superfluous t ry. This is not
merely a type inference issue, but rather a design defect, as
hof cannot be manually annotated with rethrows, either.

2) C-class Bug: The code in Figure [9] crashes swiftc
during the Swift Intermediate Language generation phase on
line 5. The parentheses around try are needed to trigger
the crash, though they do not change the program’s behavior.

class Class {
var num: Int = 1
init () throws {}

}
_ = (try Class ().num)

N AW N =

Fig. 9. Bug 10: A compiler crash involving t ry in unnecessary parentheses.

enum A {}

struct MyStruct { var a: A }

func myFunc(_: inout A) {}

func myOtherFunc(s: inout MyStruct) {
myFunc(&s . a)

NN =

}

Fig. 10. Program combining in-out and dot (.) expressions.

Further analysis revealed this bug was present as early as Swift
5.5, so it lurked for nearly three years. Overall, our fuzzing
efforts revealed that semantically meaningless parentheses had
surprising impacts on the compiler’s behavior, with bugs 6, 9,
10, and 11 all dependent on unnecessary parentheses.

3) S-class Bugs: Most S-class bugs we found are cases
where Swift’s grammar specification [35[] deviates from the
compiler’s behavior. For example, according to Swift’s orig-
inal grammar, line 5 of Figure [I0] should be rejected, as
only identifiers were permitted to follow &. After reporting
this to developers, the grammar was updated to allow any
primaryExp to follow &. However, this fix is incomplete, as
this code should still be rejected. To understand why, Figure
shows a snippet of the new grammar. The new grammar states
that s.a is an explicitMembExp, which is only derivable
from postfixExp, not primaryExp. Bug 4 in Table [
represents this issue, and we mark it as only partially fixed.

B. RQ2: Generation Rate

The fuzzer took 5:26:25(hh:mm:ss) to produce 439,096,876
mutant programs across all levels, which is approximately
22,448 mutants generated per second. This far exceeds the
rate at which swiftc can compile them; in total, only
0.32% of these (1,413,648) were compiled on swiftc, which

exp = [tryOp| [awaitOp] prefixExp [infixExps]
prefixExp = [prefixOp] postfixExp | inOut
postfixExp ::= primaryExp | explicitMembExp
explicitMembExp =

postfixExp ~.

identifier [genericArgumentClause]

Fig. 11. Subset of the new Swift expression grammar showing that Figure [T0]
should still be rejected. Names and irrelevant productions are edited for space.

66

TABLE I
BUGS FOUND, USING BUG CLASSES FROM SECTION[VI-A] “LEVEL” INDICATES WHICH FUZZER LEVEL(S) FOUND THE BUG, USING THE LEVELS FROM
SECTION[VI} “N/A” MEANS THE BUG WAS FOUND DURING FUZZER DEVELOPMENT. v * SIGNIFIES EITHER AN INCOMPLETE OR UNRELEASED BUGFIX.

Bug ID Bug Class Level Reported Confirmed Fixed Description

1 S N/A v v v Unreachable production in grammar

2 S N/A v v X Some “reserved words” are actually undocumented keywords.
Named functions allow for throws and rethrows, but higher-order functions

3 R 1,2,3 v X X only handle throws, creating issues when using a named function as a
higher-order function. (Figure

4 S N/A v v vE Grammar for in-out-expressions is overly restrictive. (Figure M])

5 S N/A v v X Grammar is missing semicolons for many productions.

6 R 2.3 v % % Type 'inference failure involving parenthesized expressions and implicit type
coercions

7 S N/A v % % f ina_l is Permitted in actor declarations despite Swift not supporting
actor inheritance.

g s N/A v % % Grammar disallows mutatlion modifier in front of willSet and

didSet clauses

9 S 1,2,3 v X X Grammar disallows parentheses around type identifiers

10 C 1,2,3 v v VE Compiler crash on certain parenthesized try expressions (Figure EI)

1 R 1.2.3 % % v Type %nferenge failure with unnecessary parentheses, unreported as it was
fixed in version 5.10

12 R 2,3 v v X Inconsistent loop termination analysis inside functions or methods

13 R 2,3 v X X Unable to determine overloaded operator exactly equals in some cases

comparatively took 43:40:15. We conclude that our fuzzer
rapidly generates well-typed programs.

C. RQ3: Nodes Annotated

The fewer nodes that can be annotated, the fewer the
opportunities to replace a node and generate a new program.
Theoretically, with a poor enough type analysis, no nodes will
be annotated and so no new programs are generable. The seed
set may also be biased towards program features that the type
analysis cannot handle. In our experimentation, we found that
1,578 programs in the seed set lack expression nodes (~46%),
and therefore will never generate any mutants no matter how
advanced our type analysis is. Of the remaining programs,
469 contained exclusively expressions our type analysis could
not reason about (~14% of all, ~25% of programs containing
expressions). This still left ~40% of programs across the entire
seed set containing at least one annotated node. Looking at
all expression nodes overall, ~26% of them were annotated.
Considering how simplistic our type analysis is, this was
higher than expected, and indicates there are nonetheless a
number of opportunities to generate new programs.

D. RQ4: Bug-Finding Effectiveness As Knowledge Increases

Looking at Table [[[s “Level” column, level 1 was sufficient
to find four bugs (3, 9-11), but at least level 2 was needed to
find an additional three bugs (6, 12, 13). No bug was exclusive
to level 3, so level 2 alone could find all bugs. This shows that
additional type system knowledge may find additional bugs
(moving from level 1 to 2), but not necessarily so (level 2 to
3). However, our current evaluation is insufficient to generalize
this conclusion. We would need many more bugs found for
this sort of evaluation, ideally all generated programs should
be run on swiftc instead of less than 1% (Section [VI-B)),
more levels and type system knowledge should be considered,

67

and other languages would need to be fuzzed to see if this is
a Swift-specific trend. We provide this data as a preliminary
exploration into fuzzer effectiveness as type system knowledge
increases. The key point is that our technique can at least begin
to answer this question.

VII. CONCLUSION

Effective fuzzing of statically-typed languages requires gen-
erating well-typed programs, which is exceptionally difficult.
We offer a mutation-based approach for guaranteed well-typed
program generation, even with only limited type information.
We can add additional type system knowledge to a fuzzer made
with this approach, all without modifying the fundamental
approach. We also adapted CLP-based fuzzing to work in
a mutation-based context, without needing CLP. We created
the first Swift fuzzer and used it to generate hundreds of
millions of programs, exposing 13 bugs overall, demonstrating
its efficiency and bug-finding capability. We lastly conducted a
preliminary investigation into how bug-finding power changes
with greater type system knowledge, showing that such a
question is at least answerable with our approach.

For future work, we plan to update our type analysis
and generator to handle more complex type information and
more Swift AST nodes. This will allow us to expand our
preliminary investigation and possibly find more bugs. We also
plan to apply this approach to other statically-typed languages,
particularly Rust [39]], given both the complexity of its type
system and the recent community interest in fuzzing it [|11]],
[40[, [41].

REFERENCES

[1] W. M. McKeeman, “Differential testing for software.” Digital Technical
Journal, vol. 10, no. 1, pp. 100-107, December 1998.

[2]

[3]

[4]

[5]

[6]

[8]

[9]
[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in
Proceedings of the 21st USENIX conference on Security symposium,
ser. Security’12. Berkeley, CA, USA: USENIX Association, 2012, pp.
38-38. [Online]. Available: http://dl.acm.org/citation.cfm?id=2362793.
2362831

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 283-294. [Online].
Available: http://doi.acm.org/10.1145/1993498.1993532

C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’15. New York, NY, USA: ACM, 2015, pp. 65-76. [Online].
Available: http://doi.acm.org/10.1145/2737924.2737986

K. Dewey, J. Roesch, and B. Hardekopf, “Language fuzzing using
constraint logic programming,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ser.
ASE ’14. New York, NY, USA: ACM, 2014, pp. 725-730. [Online].
Available: http://dot.acm.org/10.1145/2642937.2642963

K. Dewey, L. Nichols, and B. Hardekopf, “Automated data structure
generation: Refuting common wisdom,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ser.
ICSE °’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 32-43.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818761
B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, no. 12, pp. 32-44,
Dec. 1990. [Online]. Available: http://doi.acm.org/10.1145/96267.96279
P. Wadler and S. Blott, “How to make ad-hoc polymorphism
less ad hoc,” in Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL *89.
New York, NY, USA: ACM, 1989, pp. 60-76. [Online]. Available:
http://doi.acm.org/10.1145/75277.75283

B. C. Pierce, Advanced Topics in Types and Programming Languages.
The MIT Press, 2004.

K. Dewey, J. Roesch, and B. Hardekopf, “Fuzzing the rust typechecker
using CLP,” in Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), ser. ASE ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 482-493.
[Online]. Available: http://dx.doi.org/10.1109/ASE.2015.65

Y. Takashima, R. Martins, L. Jia, and C. S. Pasdreanu, “Syrust: automatic
testing of rust libraries with semantic-aware program synthesis,” in
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, ser. PLDI 2021.
New York, NY, USA: Association for Computing Machinery, 2021, p.
899-913. [Online]. Available: https://doi.org/10.1145/3453483.3454084
S. Chaliasos, T. Sotiropoulos, D. Spinellis, A. Gervais, B. Livshits,
and D. Mitropoulos, “Finding typing compiler bugs,” in Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, ser. PLDI 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 183-198.
[Online]. Available: https://doi.org/10.1145/3519939.3523427

D. Stepanov, M. Akhin, and M. Belyaev, “Type-centric kotlin compiler
fuzzing: Preserving test program correctness by preserving types,” in
2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), 2021, pp. 318-328.

R. Grigore, “Java generics are turing complete,” CoRR, vol.
abs/1605.05274, 2016. [Online]. Available: http://arxiv.org/abs/1605.
05274

Stack Overflow, “2024 developer survey,” 2024. [Online]. Available:
https://survey.stackoverflow.co/2024/

Apple, “The swift programming language (5.10),” 2024.
[Online]. Available: |https://docs.swift.org/swift-book/documentation/
the-swift-programming-language

J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,”
Theory and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67—
96, 2012.

C Standards Committee, “C17 standard,” 2017. [Online]. Available:
https://www.iso0.org/standard/74528.html

N. A. Awar, K. Jain, C. J. Rossbach, and M. Gligoric, “Programming
and execution models for parallel bounded exhaustive testing,” Proc.
ACM Program. Lang., vol. 5, no. OOPSLA, oct 2021. [Online].
Available: https://doi-org.libproxy.csun.edu/10.1145/3485543

68

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]
[31]
[32]

(33]

[34]

[35]

[36]

(37]

[38]
(39]

[40]

[41]

Z. Zang, N. Wiatrek, M. Gligoric, and A. Shi, “Compiler testing
using template java programs,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’22. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3551349.3556958

T. Sotiropoulos, S. Chaliasos, and Z. Su, “API-Driven program
synthesis for testing static typing implementations,” Proc. ACM
Program. Lang., vol. 8, no. POPL, jan 2024. [Online]. Available:
https://doi.org/10.1145/3632904

Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for rigorous
compiler testing,” in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
347-361. [Online]. Available: https://doi.org/10.1145/3062341.3062379
R. Hindley, “The principal type-scheme of an object in combinatory
logic,” Transactions of the American Mathematical Society, vol. 146,
pp- pp- 29-60, 1969. [Online]. Available: http://www.jstor.org/stable/
1995158

R. Milner, “A theory of type polymorphism in programming,” Journal
of Computer and System Sciences, vol. 17, no. 3, pp. 348 — 375,
1978. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0022000078900144

B. Fetscher, K. Claessen, M. Patka, J. Hughes, and R. B. Findler,
“Making random judgments: Automatically generating well-typed terms
from the definition of a type-system,” in Programming Languages and
Systems, J. Vitek, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 383-405.

W. G. Romano, “unification-fd:
algorithms,” 2023. [Online].
package/unification-fd

D. Kroening and O. Strichman, Decision Procedures: An Algorithmic
Point of View, ser. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2008. [Online]. Available: http://books.google.com/
books?id=anJsH3Dg5BIC

K. Dewey, S. Hairapetian, and M. Gavrilov, “Mimis: Simple, efficient,
and fast bounded-exhaustive test case generators,” in 2020 IEEE 13th In-
ternational Conference on Software Testing, Validation and Verification
(ICST), 2020, pp. 51-62.

B. A. Galler and M. J. Fisher, “An improved equivalence algorithm,”
Commun. ACM, vol. 7, no. 5, p. 301-303, may 1964. [Online].
Available: https://doi.org/10.1145/364099.364331

D. H. Warren, “An abstract prolog instruction set,” Technical report,
1983.

“Haskell/understanding monads/state,” 2023. [Online]. Available: https:
/len.wikibooks.org/wiki/Haskell/Understanding_monads/State

P. Chiusano and R. Bjarnason, Functional Programming in Scala, 1st ed.
USA: Manning Publications Co., 2014.

Scala Development Team, “Tour of scala: For comprehensions,” 2024.
[Online]. Available: https://docs.scala-lang.org/tour/for-comprehensions.
html

“Haskell/do notation,” 2021. [Online]. Available: https://en.wikibooks.
org/wiki/Haskell/do_notation

Apple, “Summary of the grammar,” 2024. [On-
line]. Available: https://docs.swift.org/swift-book/documentation/
the- swift-programming-language/summaryofthegrammar/

R. Frost and J. Launchbury, “Constructing natural language interpreters
in a lazy functional language,” Comput. J., vol. 32, no. 2, p. 108-121,
apr 1989. [Online]. Available: https://doi.org/10.1093/comjnl/32.2.108
“scala-parser-combinators,” 2024. [Online]. Available: https://github.
com/scala/scala-parser-combinators

“swift,” 2024. [Online]. Available: https://github.com/apple/swift
Mozilla, “The rust language website.” [Online]. Available:
/Iwww.rust-lang.org/

M. Sharma, P. Yu, and A. F. Donaldson, “Rustsmith: Random
differential compiler testing for rust,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1483-1486. [Online]. Available:
https://doi.org/10.1145/3597926.3604919

Q. Wang and R. Jung, “Rustlantis: Randomized differential testing of
the rust compiler,” Proc. ACM Program. Lang., vol. 8, no. OOPSLA2,
Oct. 2024. [Online]. Available: https://doi.org/10.1145/3689780

Simple generic unification
Available: https://hackage.haskell.org/

http:

http://dl.acm.org/citation.cfm?id=2362793.2362831
http://dl.acm.org/citation.cfm?id=2362793.2362831
http://doi.acm.org/10.1145/1993498.1993532
http://doi.acm.org/10.1145/2737924.2737986
http://doi.acm.org/10.1145/2642937.2642963
http://dl.acm.org/citation.cfm?id=2818754.2818761
http://doi.acm.org/10.1145/96267.96279
http://doi.acm.org/10.1145/75277.75283
http://dx.doi.org/10.1109/ASE.2015.65
https://doi.org/10.1145/3453483.3454084
https://doi.org/10.1145/3519939.3523427
http://arxiv.org/abs/1605.05274
http://arxiv.org/abs/1605.05274
https://survey.stackoverflow.co/2024/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language
https://docs.swift.org/swift-book/documentation/the-swift-programming-language
https://www.iso.org/standard/74528.html
https://doi-org.libproxy.csun.edu/10.1145/3485543
https://doi.org/10.1145/3551349.3556958
https://doi.org/10.1145/3632904
https://doi.org/10.1145/3062341.3062379
http://www.jstor.org/stable/1995158
http://www.jstor.org/stable/1995158
http://www.sciencedirect.com/science/article/pii/0022000078900144
http://www.sciencedirect.com/science/article/pii/0022000078900144
https://hackage.haskell.org/package/unification-fd
https://hackage.haskell.org/package/unification-fd
http://books.google.com/books?id=anJsH3Dq5BIC
http://books.google.com/books?id=anJsH3Dq5BIC
https://doi.org/10.1145/364099.364331
https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State
https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State
https://docs.scala-lang.org/tour/for-comprehensions.html
https://docs.scala-lang.org/tour/for-comprehensions.html
https://en.wikibooks.org/wiki/Haskell/do_notation
https://en.wikibooks.org/wiki/Haskell/do_notation
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/summaryofthegrammar/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/summaryofthegrammar/
https://doi.org/10.1093/comjnl/32.2.108
https://github.com/scala/scala-parser-combinators
https://github.com/scala/scala-parser-combinators
https://github.com/apple/swift
http://www.rust-lang.org/
http://www.rust-lang.org/
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1145/3689780

	Introduction
	Related Work
	Approach
	Type Analysis
	Mutation
	Key Properties

	Adapting CLP-based Fuzzing
	Unification
	Nondeterminism
	Combining Unification and Nondeterminism
	Performing Well-typed Generation
	Code Cleanup

	Implementation
	Evaluation
	RQ1: Number and Kinds of Bugs Found
	R-class Bugs
	C-class Bug
	S-class Bugs

	RQ2: Generation Rate
	RQ3: Nodes Annotated
	RQ4: Bug-Finding Effectiveness As Knowledge Increases

	Conclusion
	References

